# the ubiquitous quasidisk mathematical surveys and monographs

**Download Book The Ubiquitous Quasidisk Mathematical Surveys And Monographs in PDF format. You can Read Online The Ubiquitous Quasidisk Mathematical Surveys And Monographs here in PDF, EPUB, Mobi or Docx formats.**

## The Ubiquitous Quasidisk

**Author :**Frederick W. Gehring

**ISBN :**9780821890868

**Genre :**Mathematics

**File Size :**42. 99 MB

**Format :**PDF, ePub, Mobi

**Download :**672

**Read :**795

This book focuses on gathering the numerous properties and many different connections with various topics in geometric function theory that quasidisks possess. A quasidisk is the image of a disk under a quasiconformal mapping of the Riemann sphere. In 1981 Frederick W. Gehring gave a short course of six lectures on this topic in Montreal and his lecture notes ``Characteristic Properties of Quasidisks'' were published by the University Press of the University of Montreal. The notes became quite popular and within the next decade the number of characterizing properties of quasidisks and their ramifications increased tremendously. In the late 1990s Gehring and Hag decided to write an expanded version of the Montreal notes. At three times the size of the original notes, it turned into much more than just an extended version. New topics include two-sided criteria. The text will be a valuable resource for current and future researchers in various branches of analysis and geometry, and with its clear and elegant exposition the book can also serve as a text for a graduate course on selected topics in function theory. Frederick W. Gehring (1925-2012) was a leading figure in the theory of quasiconformal mappings for over fifty years. He received numerous awards and shared his passion for mathematics generously by mentoring twenty-nine Ph.D. students and more than forty postdoctoral fellows. Kari Hag received her Ph.D. under Gehring's direction in 1972 and worked with him on the present text for more than a decade.

## Tensor Categories

**Author :**Pavel Etingof

**ISBN :**9781470434410

**Genre :**

**File Size :**79. 17 MB

**Format :**PDF, ePub, Docs

**Download :**565

**Read :**447

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

## A Primer On The Dirichlet Space

**Author :**Omar El-Fallah

**ISBN :**9781107729773

**Genre :**Mathematics

**File Size :**81. 76 MB

**Format :**PDF, ePub, Mobi

**Download :**841

**Read :**904

The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.

## Ein Jahrhundert Mathematik 1890 1990

**Author :**Gerd Fischer

**ISBN :**3528063262

**Genre :**Mathematics

**File Size :**78. 3 MB

**Format :**PDF, Mobi

**Download :**993

**Read :**459

Zum Anlass des 100. Geburtstages der Deutschen Mathematiker-Vereinigung erscheint diese Festschrift, bestehend aus neunzehn Beiträgen, in denen anerkannte Fachwissenschaftler die Entwicklung ihres jeweiligen mathematischen Fachgebietes beschreiben und dabei auch kritische Rückschau auf die Geschichte der Deutschen Mathematiker-Vereinigung seit ihrer Gründung 1890 halten. Insbesondere der erste Beitrag setzt sich intensiv mit der Historie der Mathematik und der Mathematiker im Dritten Reich auseinander."Mit diesem Band wird ein wichtiger Beitrag zur bisher wenig entwickelten Geschichtsschreibung der neueren Mathematik geleistet. (R. Siegmund-Schultze in "Deutsche Literatur-Zeitung" 1,2/1992, Bd. 113)

## Foundations Of Analysis

**Author :**Joseph L. Taylor

**ISBN :**9780821889848

**Genre :**Mathematics

**File Size :**47. 98 MB

**Format :**PDF, ePub

**Download :**683

**Read :**875

Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied.