network anomaly detection a machine learning perspective

Download Book Network Anomaly Detection A Machine Learning Perspective in PDF format. You can Read Online Network Anomaly Detection A Machine Learning Perspective here in PDF, EPUB, Mobi or Docx formats.

Network Anomaly Detection

Author : Dhruba Kumar Bhattacharyya
ISBN : 9781466582095
Genre : Computers
File Size : 85. 35 MB
Format : PDF, ePub, Mobi
Download : 663
Read : 1281

Download Now Read Online

With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents machine learning techniques in depth to help you more effectively detect and counter network intrusion. In this book, you’ll learn about: Network anomalies and vulnerabilities at various layers The pros and cons of various machine learning techniques and algorithms A taxonomy of attacks based on their characteristics and behavior Feature selection algorithms How to assess the accuracy, performance, completeness, timeliness, stability, interoperability, reliability, and other dynamic aspects of a network anomaly detection system Practical tools for launching attacks, capturing packet or flow traffic, extracting features, detecting attacks, and evaluating detection performance Important unresolved issues and research challenges that need to be overcome to provide better protection for networks Examining numerous attacks in detail, the authors look at the tools that intruders use and show how to use this knowledge to protect networks. The book also provides material for hands-on development, so that you can code on a testbed to implement detection methods toward the development of your own intrusion detection system. It offers a thorough introduction to the state of the art in network anomaly detection using machine learning approaches and systems.

Practical Machine Learning A New Look At Anomaly Detection

Author : Ted Dunning
ISBN : 9781491914182
Genre : Computers
File Size : 36. 23 MB
Format : PDF, ePub, Docs
Download : 571
Read : 321

Download Now Read Online

Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts

Data Mining And Machine Learning In Cybersecurity

Author : Sumeet Dua
ISBN : 1439839433
Genre : Computers
File Size : 73. 76 MB
Format : PDF, Mobi
Download : 846
Read : 595

Download Now Read Online

With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need. From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challenges—detailing cutting-edge machine learning and data mining techniques. It also: Unveils cutting-edge techniques for detecting new attacks Contains in-depth discussions of machine learning solutions to detection problems Categorizes methods for detecting, scanning, and profiling intrusions and anomalies Surveys contemporary cybersecurity problems and unveils state-of-the-art machine learning and data mining solutions Details privacy-preserving data mining methods This interdisciplinary resource includes technique review tables that allow for speedy access to common cybersecurity problems and associated data mining methods. Numerous illustrative figures help readers visualize the workflow of complex techniques and more than forty case studies provide a clear understanding of the design and application of data mining and machine learning techniques in cybersecurity.

Structural Health Monitoring

Author : Charles R. Farrar
ISBN : 9781119994336
Genre : Computers
File Size : 77. 42 MB
Format : PDF, Docs
Download : 667
Read : 430

Download Now Read Online

Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM. Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions. Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies. Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms Benefits from extensive use of the authors’ detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.

Data Mining

Author : Charu C. Aggarwal
ISBN : 9783319141428
Genre : Computers
File Size : 35. 12 MB
Format : PDF, Kindle
Download : 470
Read : 1145

Download Now Read Online

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

Conformal Prediction For Reliable Machine Learning

Author : Vineeth Balasubramanian
ISBN : 9780124017153
Genre : Computers
File Size : 66. 64 MB
Format : PDF, Kindle
Download : 736
Read : 1182

Download Now Read Online

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Bayesian Reasoning And Machine Learning

Author : David Barber
ISBN : 9780521518147
Genre : Computers
File Size : 46. 9 MB
Format : PDF, Kindle
Download : 145
Read : 272

Download Now Read Online

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Top Download:

New Books