# mathematical optics classical quantum and computational methods

**Download Book Mathematical Optics Classical Quantum And Computational Methods in PDF format. You can Read Online Mathematical Optics Classical Quantum And Computational Methods here in PDF, EPUB, Mobi or Docx formats.**

## Mathematical Optics

**Author :**Vasudevan Lakshminarayanan

**ISBN :**9781439869604

**Genre :**Science

**File Size :**25. 3 MB

**Format :**PDF, ePub, Mobi

**Download :**972

**Read :**1282

Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.

## Mathematical Methods Of Quantum Optics

**Author :**Ravinder R. Puri

**ISBN :**3540678026

**Genre :**Mathematics

**File Size :**34. 84 MB

**Format :**PDF, ePub, Docs

**Download :**899

**Read :**606

This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are outlined. Analytically exactly solvable classes of equations are identified. The text also discusses consequences of Lie algebraic properties of Hamiltonians, such as the classification of their states as coherent, classical or non-classical based on the generalized uncertainty relation and the concept of quasiprobability distributions. A unified approach is developed for determining the dynamics of a two-level and a three-level atom interacting with combinations of quantized fields under certain conditions. Simple methods for solving a variety of linear and nonlinear dissipative master equations are given. The book will be valuable to newcomers to the field and to experimentalists in quantum optics.

## Computational Physics

**Author :**Philipp O.J. Scherer

**ISBN :**3642139906

**Genre :**Science

**File Size :**61. 17 MB

**Format :**PDF

**Download :**367

**Read :**1188

This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

## Computational Methods For Physics

**Author :**Joel Franklin

**ISBN :**9781107067851

**Genre :**Science

**File Size :**22. 49 MB

**Format :**PDF, ePub, Mobi

**Download :**399

**Read :**391

There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.

## Recent Advances In Scientific Computing And Applications

**Author :**Jichun Li

**ISBN :**9780821887370

**Genre :**Mathematics

**File Size :**22. 56 MB

**Format :**PDF, ePub, Docs

**Download :**809

**Read :**624

This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.

## Quantum Information Computation And Cryptography

**Author :**Fabio Benatti

**ISBN :**9783642119132

**Genre :**Science

**File Size :**60. 93 MB

**Format :**PDF

**Download :**711

**Read :**682

This multi-authored textbook addresses graduate students with a background in physics, mathematics or computer science. No research experience is necessary. Consequently, rather than comprehensively reviewing the vast body of knowledge and literature gathered in the past twenty years, this book concentrates on a number of carefully selected aspects of quantum information theory and technology. Given the highly interdisciplinary nature of the subject, the multi-authored approach brings together different points of view from various renowned experts, providing a coherent picture of the subject matter. The book consists of ten chapters and includes examples, problems, and exercises. The first five present the mathematical tools required for a full comprehension of various aspects of quantum mechanics, classical information, and coding theory. Chapter 6 deals with the manipulation and transmission of information in the quantum realm. Chapters 7 and 8 discuss experimental implementations of quantum information ideas using photons and atoms. Finally, chapters 9 and 10 address ground-breaking applications in cryptography and computation.

## Symplectic Techniques In Physics

**Author :**Victor Guillemin

**ISBN :**0521389909

**Genre :**Mathematics

**File Size :**21. 92 MB

**Format :**PDF, ePub, Docs

**Download :**469

**Read :**1014

Symplectic geometry is very useful for clearly and concisely formulating problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different view points. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the last thirty years, but at the same time apply the apparatus to a great number of concrete problems. In the first chapter, the authors provide an elementary introduction to symplectic geometry and explain the key concepts and results in a way accessible to physicists and mathematicians. The remainder of the book is devoted to the detailed analysis and study of the ideas discussed in Chapter 1. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance. This work can be used as a textbook for graduate courses, but the depth of coverage and the wealth of information and application means that it will be of continuing interest to, and of lasting significance for mathematicians and mathematically minded physicists.